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- | WHAT'S WRONG WITH
STATISTICAL TESTS—
AND WHERE WE GO FROM HERE

Statistics is a subject of amazingly many uses and surprisingly few effec-
tive practitionears.
—B. Efton and R. Tabshirani (1993, p. xiv)

This chapter considers problems with null hypothesis significance test-
ing (NHST). The literature in this area is quite large. D. Anderson, Burnham,
and W. Thompson (2000) recently found more than 300 articles in different
disciplines about the indiscriminate use of NHST, and W. Thompson {2001)
lists more than 400 references about this topic. As a consequence, it is
possible to cite only a few representative works. General reviews of the
controversy about NHST in the social sciences include Borenstein (1998),
Nickerson (2000), and Nix and Barnette {1998). Examples of works more
critical of NHST include J. Cohen (1994); Gigerenzer (1998a, 1998b);
Gliner, Morgan, Leech, and Harmon (2001); and Kruegar {2001), and
examples of works that defend NHST include Abelson (1997a, 1997b);
Chow (1998a, 1998b); Harris {1997c); and Mulaik, Raju, and Harshman
(1997).

After review of the debate abour NHST, I argue that the criticisms
have sufficient merit to support the minimization or elimination of NHST
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in the behavioral sciences. I offer specific suggestions along these lines.
Some concern alternatives that may replace or supplement NHST and thus
are directed at résearchers. Others concemn edjtorial policies or educational
curricula. Few of the recommendarions given are original in that many have
been made over the years by various authors. However, as a set they deal
with issues often considered in separate works, For simplicity, the context
for NHST assumed is reject—support (RS) instead of accept—support (AS).
The RS context is more common, and many of the arguments can be
reframed for the AS context. Exercises for this chapter can be found on
this book’s Web site.

NHST OUTCOMES ARE INTERPRETED
AS SOMETHING THEY ARE NOT

People are by nature good at pattern recognition. We find evidence
for this in almost every aspect of human life, whether it is the apparently
innate preference of infants for visual stimuli that resemble a human face
or the use of language by adults to construct a social reality. There are
probably deep evolutionary roots of our ability to find meaning in the world
around us. This ability is also at the core of some personality theories. For
instance, Rollo May (1975) wrote,

Creative people . . . do not run away from non-being, but by encounter-
ing and wrestling with it, force it to produce being, They knock on
silence for answering music; they pursue meaninglessness until they
force it to mean. (p. 93)

Qur pattern recognition ability is so well-developed that sometimes
we See too much meaning in otherwise random events. Sagan {1996) de-
scribed several examples, including one that involved an early satellite
photo of a hill in a place called Cydonia on Mars that resembles a human
face. Some people took this formation as evidence for a vanished civiliza-
tion. Later satellite images of the same hill showed pretty clearly that it
was carved by natural forces such as wind erosion, but the tendeney to see
something recognizable in randomness is strong. By virtue of their train-
ing or personal dispositions, scientists may be extraordinarily good at pat-
tern recognition, which also makes them subject to the potential error of
seeing too much meaning in certain events. This seems to be true about
NHST, because many common fallacies about it involve exaggerating
what can be inferred from statistical tests. These incorrect inferences may
be a source of cognitive misdirection that hinders progress in behavioral
research.
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Misinterpretations of p Values

Next we consider common misunderstandings about the probabilities
generated by statistical tests, p values. Let us first review their correct inter-
pretation. Recall that statistical tests measure the discrepancy between a ™
sample statistic and the value of the population parameter specified in the
null hypothesis, Hp, taking account of sampling error. The empirical test
statistic is converted to a probability within the appropriate central test
distribution. This probability is the conditional probability of the statistic
assuming Hy is true (see chap. 2, this volume). Other correct mterptetattons
for the specific case p < .05 include the following:

1. The odds are less than 1 to 19 of getring a result from a random
sample even more extreme than the observed one when Hy
is true. )

2. Less than 5% of test statistics are further away from the mean
of the sampling distribution under Hy than the one for the
observed result.

3. Assuming Hp is true and the study is repeated many times,
less than 5% of these results will be even more inconsistent
with Hy than the observed result.

That is about it. Other correct definitions may be just variations of
those listed. The range of correct interpretations of p values is thus actually
quite narrow. Let us refer to any correct definition as p (D | Hp), which
emphasizes probabilities from statistical tests as conditional probabilities of
the data (D)} given the null hypothesis.

Presented next are common misinterpretations for the case p < .05.
Some of them arise from forgetting that p values are conditional probabilities
or reversing the two events represented by p values, D and Hy. Reasons
why each is incorrect are also given below:

Fallacy Number 1

A p value is the probability that the result is a result of sampling error;
thus, p < .05 says that there is less than 2 5% likelihood that the result
happened by chance. This false belief is the odds-against-chance fantasy
(Carver, 1978). It is wrong because p values are computed under the assump-
tion that sampling error is what causes sample statistics to depart from the
null hypothesis. That is, the likelihood of sampling error is already taken
to be 1,00 when a statistical test is conducted. It is thus illogical to view
p values as measuring the probability of sampling error. This fantasy together
with others listed later may explain the related fallacy that statistical tests
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sort results into two categories, those a result of chance (Hy is not rejected)
and others a result of “real” effects (Hp is rejected). Unfortunately, statistical
tests applied it individual studies cannot make this distinction. This is
because any decision based on NHST outcomes may be wrong (i.e., a Type 1
or Type I error).

Fallacy Number 2

A p value is the probability that the null hypothesis is true given the
data; thus, p < .05 implies p (Hg | D) < .05. This is the inverse probubility
error (). Cohen, 1994) or the Bayesian Id’s wishful thinking error (Gigerenzer,
1993), and it stems from forgetting that p values are conditional probabilities
of the data, or p (D] Hp), and not of the null hypothesis, or p (Hp|D). The
latter is the posterior probability of the null hypothesis in light of the data,
and it is probably what researchers would really like to know. A simplified
form of Bayes's theorem shows us that p (D| Ho) from a statistical test and
the posterior probability of the null hypothesis are in fact related:

p{Ho|D) =2 {H")p%? Ho) (3.1)

In Equation 3.1, p {Hp) is the prior probability that the null hypothesis is
true before the data are collected, and p (D} is the prior probability of the
data itrespective of the truth of the null hypothesis. That is, given the p
value from a statistical test along with estimates of p {(He) and p (D), we
could derive with this equation p (Hy | D), the posterior probability of the
null hypothesis. Unfortunately, those who use traditional statistical tests do
not usually think about prior probabilities. If pressed to specify these values,
they may venture a guess, but it may be viewed as subjective. In contrast,
a Bayesian approach specifically estimates the posterior probability of the
hypothesis, not just the conditional probability of the data under that
hypothesis. There are also ways to estimate priotr probabilities that are not
wholly subjective. Chapter 9 considers the Bayesian approach to hypothe-
sis testing.

Fallacy Number 3

If the null hypothesis is rejected, p is the probability that this decision
is wrong; thus, if p < .05, there is less than a 5% chance that the decision
to reject the null hypothesis is a Type I error. This fallacy is another kind
of inverse probahility error that Pollard (1993) described as confusing the
conditional prior probability of a Type I error, or

o = p (reject Hg | Ho)

64 STATISTICAL TESTS

with the conditional posterior probability of a Type I error given that the
fwll hypothesis was rejected, or

b (Hp reject Hp)

Pollard uses Bayes's theorem to show it is not generally possible to estimate
p {Ho|reject He) from ¢ On 2 more intuitive level, the decision to refect
the null hypothesis in an individual study is either comect or incorrect, s0
no probability is associated with it. Only with sufficient replication could
we discern whether a specific decision to reject Hp was correct.

Fallacy Number 4

The complement of p, 1 — p, is the probability that the alternative
hypothesis is true given the data, or p (H; | D). Thus, p < .05 says that the
likelihood that H; is true is greater than 95%. This erroneous idea is the
validity fallacy (Mulaik et al., 1997) or the valid research hypothesis fantasy
(Carver, 1978). The complement of p is a probability, but it is just the
likelihood of getting a result even less extremeé under Hg than the one
actually found. Accordingly, complements of p have nothing directly to do
with the posteriot probability of H;.

" Fallacy Number 5

The complement of p is the probability that a result will replicate
under constant conditions; thus, p < .05 says that the chance of replication
exceeds 95%. This is the replicability or repeatability fallacy (Carver, 1978).
Another variation for p < .05 is that a replication has a 95% probability
of yielding a statistically significant result, presumably in the same direction
as in the original study. I this fallacy were true, knowing the probability
of finding the same result in future replications would be very useful. Alas,
a p value is just the probability of a particular result under a specific hypothe-
sis. As noted by Carver, replication is a matter of expetimental design and
whether an effect actually exists in the population. It is thus an empirical
question for future studies and not one directly addressed by statistical tests
in a single study.

Readers should note, however, that there is a sense in which p values
concern replication. Greenwald, Gonzalez, Harris, and Guthrie (1996) made
the point that p values in an original study are monotonically related to the
statistical power of replications. A monotonic relation is typically ordinal
ot nonlinear; thus, there is not a uniform correspondence between p values
and the probabilities of null hypothesis rejections in replications. Specifi-
cally, without special graphs like ones presented by Greenwald et al., one
cannot directly convert a p value to the likelthood of repeating a null
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hypothesis rejection. This is a subtle point. It is probably best to keep in mind
that p values have little to do with replication in the usual scientific sense.
Mistaken Conclusions After Making a Decision About

the Null Hypothesis

Thete are also many false conclusions that may be reached after decid-
ing to reject or fail to reject Hy based on p values. Most require little
explanation about why they are wrong:

Fallacy Number 1

A p value is a numerical index of the magnitude of an effect; thus,
low p values indicate large effects. This misconception could be called the
magnitude fallacy. Smaller p values indicate lower conditional probabilities
of the data, given the required assumption that the null hypathesis exactly
describes the population (J. Cohen, 1994), but that is about all that can
be said without other kinds of analyses such as effect size estimation. This
is because statistical tests and their p values measure sample size and effect
size {e.g., Table 2.2}, so an effect of trivial magnitude needs only 2 large
enough sample to be statistically significant. If the sample size is actually
large, low p values just confirm a large sample, which is a tautology
(B. Thompson, 1992). Now, results that are truly of large magnitude may
also have low p values—it is just that one cannot tell much by locking at
p values alone.

Fallacy Number 2

Rejection of the null hypothesis confirms the alternative hypothesis
and the research hypothesis behind it. This meaningfulness fallacy actually
reflects two conceptual errors. First, the decision to reject Hp in a single
study does not imply that H; is “proven.” Second, even if the statistical
hypothesis H) is correct, it does not mean that the substantive hypothesis
behind it is also comect. For example, Artbuthnot (1710} studied the birth
records for London for 82 consecutive years (1629-1710). More boys than
gitls were bom every single year during this time. For example, in 1629
theré were 5,218 registered births of boys compared with 4,683 births of
girls. Based on all these data, Arbuthnot rejected the hypothesis that equal
proportions of babies are boys versus girls. In modern terms, he rejected the
non-nil hypothesis Hy: ® = .50, where % is the population proportion of
boys in favor of the directional alternative hypothesis H: @ > .50. However,
Arbuthnot's substantive hypothesis was that because of divine providence,
more boys are born to compensate for higher numbers of male deaths in
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wars, accidents, and the like so that, in the end, “every Male may have a
Female of the same Country and suirable Age” (1710, p. 188). Arbuthnot
was correct about the stasistical hypothesis Hj, but his substantive hypothesis,
aithough colorful, does not correspond to the actual undetlying cause of
unequal numbers of newborn boys versus girls: Sperm. with Y chromosomes
swim faster than those with X chromosomes and arrive in greater numbers
to fertilize the egg.

The distinction between statistical and substantive hypotheses is cru-
cial. They differ not only in their levels of abstraction (statistical: lowest;
scientific: highest), but also have different implications following rejection
of Hy. If Hp and H, reflect only statistical hypotheses, there is little to do
after rejecting Hg except replication. However, if H; stands for a scientific
hypothesis, the work just begins after Hp is rejected. Part of the work involves
pitting the research hypothesis against other substantive hypotheses also
comparible with the statistical hypothesis Hy. If these other hypotheses
cannot be ruled out, the researcher’s confidence in the original hypothesis
must be tempered. It may also be necessary to conduct additional studies
that attempt to falsify equivalent models. This is the strategy of strong
inference (Platt, 1964).

Fallacy Number 3

Failure to reject a nil hypothesis means that the population effect size
is zero. This is not a valid inference for a few reasons. One is the basic
tenet of science that absence of evidence is not evidence of absence. Also,
the decision to fail to reject a nil hypothesis may be a Type I error. For
example, there may be a real effect, but the study lacked sufficient power
to detect it. Given the relatively low overall power of behavioral research,
this is probably not an infrequent event. Poor research design or use of

flawed measures can also lead to Type Il errors.

Fallacy Number 4

Failure ro reject the nil hypothesis Hy: 11 = [ ; means that the two
populations are equivalent. Suppose that an established trearment known
to be effective is compared with a new treatment that costs less. [t is incorrect
to conclude that the two treatments are equivalent if the nil hypothesis
Hp: 1| = W3 is not rejected. The inference of equivalence would be just as
incorrect if this example concerned reliability coefficients or proportions in
two groups that were not statistically different (Abelson, 1997a; B. Thomp-
son, 2003). To rephrase the tenet cited earlier, the absence of evidence for
differences is not evidence for equivalence. Proper methods for equivalence
testing are described later.
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Fallacy Number 5

Re eCtiIlg t},l.e Il.l.lll hypotheSIS COI].ﬁII[IS th.e quall‘ Y ()f |ll.e expet lll:letltal
:
dESIg[l. I QOr Study deslg'[l can create aItlfaCtLlal eﬁecm that lead to Incorrect

rejection of Hp. Also, plain old s i
: R ampl ‘
even in well-controlled studies. pling ereor can lead to Type 1 ervors

Fallacy Number 6

If the i i .
misconcepticf:g tll‘;};p;t.hems' is not rejected, the study is a failure. This
methods or low power :amf image of the preceding one. Although imprbper
be the product of good n cause Type Il errors, failure to reject Hy can also
studice are 'mc0rregc > W;Stel?ce. For example, some claims based on initial
results. Readers ma ;‘ec 111C means that replicacion will lead to negarive
who claimed to haZe rad e sIm et 2 few years ago by researchers
with a relatively sim; I1)6:01 ;Ce cold fusion (a low energy nuclear reaction)
to replicate the pheﬁ aboratory apparatus, Other scientists were unable
claim was prematur omenon, and the eventual conclusion was thac th
e (Taubes, 1993). ¢

Fallacy Number 7
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: ion is related to th es di
e . ‘ e ones discussed to thi
o 1c11c1 bT o})fwous by now that a single Hj rejection does not rf)hls
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Fallacy Number 8

The fai ; ; .

H, across f;ﬁ‘&;zstOPreg}cate is the i:alh.lre to make the same decision about
e o .Ur.lde:ct%r} anth Reilly (1999) refer to this idea as the
(£ H, s sefected in the § is SOIZ] ism, a result is considered not replicated
this wiew fenores sampl st study but not in the second study. However,
across the two studiesp ; size, effect size, and the direction of the effecé
initial study and a ni1i1 UPE?S‘? a group mean difference is found in an
difference is found in YPC;_ esis is refected. The exact same group mean
a smaller sample size. aVl(./? ;(C::Lt:laci? sfll:iy’ bUt. I.-IO is not tejected because of
even. though different decisions abzut Hz \lzr::;tlr:’:id?i‘:gscsedirtﬁg l:tcuactli'on

ies.

Widespread Nature of Misinterpretations

Th . .
Commonezz ertrsl :wdence that.many of the false beliefs just described are
QOakes (1986) 1r<ncc31ng PTOfe55L9nal researchers and educators. For instance
asked 70 academic psychologists to state their usually adOpteci

68 STATISTICAL TESTS

: TABLE 3.1

Usually Adopted Interpretations of p < .01 by 70 Academic Psychologists -
Statement f %
1. The null hypothesis is absolutely disproved. 1 1.4
.2, The probability of the null hypothesis has peen found. 32 457
3. The experimental hypothesis is absolutely proved. 2 2.9
4. The prabability of the expetimental hypothesis can be deduced. 30 429
5. The probability that the decislon taken is wrong is known. A8 68.6
6. A replication has a .99 probability of being significant. 24 343
7. The probability of the data given the null hypothesis is Known. 8 11.3

Note. From Statistical Infarence (p. 1), by M. Oaxes, 1986, New York: Wilsy. Copyright 1886 by Jehn
Wiley and Sons. Reprinted with permission.

interpretations of p < 01. The respondents could offer more than one
interpretation. Of the seven statements listed in Table 3.1, only the last is
correct, but just 8 of 70 participants (11%) reported it. Almost 50% endorsed
staternents 2 and 4 in the table that p values indicate the conditional
probability of Ho (invese probability error) or Hy (valid research hypothesis
fallacy), respectively: The majority of the respondents said in error that p
values are posterior probabilities of Type I error, and about cne third said
that the complements of p values indicate the likelihood of replication
{repeatability fallacy). .

Lest one think that Oakes’s results are specific to an unrepresentative
group of NHST-challenged academic psychologists, results of other surveys
of professionals or near-professionals in the social sciences indicate similar,
apparently widespread misunderstandings (e.g- Mirtag & B. Thompson,
2000; Nelson, R. Rosenthal, & Reosnow, 1986). Tvexsky and Kahneman
(1971) described a kind of cognitive distortion amons psychologists they
called the belief in the law of small numbers. This belief holds that {a) even
small samples are typically representative of their respective populations,
and (b) statistically significant results are likely to be found in replication
samples half the size of the original. The belief in the law of small numbers
is probably just as widespread in other social science disciplines as in
psychology. ’

One also need not look very hard in published sources t© find errors
similar to those in Table 3.1.]. Cohen (1994) listed several distinguished
authors who have made such mistakes in print, including himself. This hook
probably contains similar kinds of errors. Dar, Serlin, and Omer (1994)
noted that several prominent psychotherapy researchers who published in
some of the best peet—reviewed journals in this area made similar mistakes
over a period of three decades. At first glance, this situation seems puzzling.
After all, many academicians and researchers have spert hundreds of hours
studying or teaching NEHST in stacistics courses at both the undergraduate
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and graduate levels. Why does this rather large investment of educational
resources and effort not havé more apparent success?

Two factors warrant comment. The first is that NHST is not the most
transparent of inference systems. Pollard and others noted that it is difficult
to explain the logic of NHST and dispel confusion about it. Some of the
language of NHST is very specific and unnatural. For example, the word
significant implies in natural language that something is important, notewor-
thy, or meaningful, bur not in NHST. There may also be inherent contradic-
tions in the hybrid of the Fisher and Neymarn-Pearson models on which
contemporary NHST is based (P. Dixon & OReilly, 1999; Gigerenzer,
1993). Another problem is a general human weakness in reasoning with
conditional probabilities, especially ones best viewed from a relative fre-
quency perspective (e.g., J.. Anderson, 1998).

NHST DOES NOT TELL US WHAT
WE REALLY WANT TO KNOW

Many of the fallacies about NHST outcomes reviewed concern things
that researchers really want to know, including the probability that Hy or
" Hj is true, the likelihood of replication, and the chance that the decision
taken to reject Hy is wrong, 2ll given the data. Using R to stand for replica-
tion, this wish list could be summarized as:

p (Ho[D), p (H;|D), p (R]D}, and p (Hy| Reject Ho)

Unfortunately, statistical tests tells us only p (D |Hg). As noted by ]. Cohen
(1994), however, there is no statistical technique applied in individual
studies that can fulfill this wish list. (A Bayesian approach to hypothesis
testing is an exception; see chap. 9, this volume.) However, there is a
method that can tell us what we really want to know, but it is not a statistical
technique; rather, it is replication, which is not only the best way to deal
with sampling error, but replication is also a gold standard in science (see
chap. 2, this volume). This idea is elaborated next and again in chapter 8.

NIL HYPOTHESES ARE USUALLY FALSE

Nil hypotheses are the most common type tested in the social sciences.
However, it is very unlikely that the value of any population parameter is
exactly zero, especially if zero implies the complete absence of an effect,
association, or différence (e.g., Kirk, 1996). For example, the population
correlation (p) between any two variables we would care to narme is probably
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not zero. It is more realistic to assume nonzero population. associations or
differences (see chap. 2, this volume). Meehl (1990} referred to these nonzero
effects as a “crud factor” because, at some level, everything is related to
everything else; Lykken’s (1968) term ambient correlational noise means basi-
cally the same thing. Although exact values of the crud factor are unknown,
correlations may depart even further from zero for variables assessed with
the same measurement method. Correlations that result in common methad
variance may be as high as .20 to .30 in absolure value.

If nil hypotheses are rarely true, rejecting them requires only sufficiently
large samples. Accordingly, (a) the effective rate of Type | error in many
studies may be essentially zero, and (b) the only kind of decision error is
Type 1. Given that power is only about .50 on average, the typical probability
of a Type II error is also about .50. F. Schmidt (1992, 1996) made the
relared point that methods to control experimentwise Type I error, such as
the Bonferroni correction, may reduce power to levels even lower than .50.
It should be said that, as point hypotheses, non-nil hypotheses are no more
likely to be true than nil hypotheses. Suppose that a non-nil hypothesis is
Hp: p = .30. The true value of the population correlation may be just as
unlikely to be exactly .30 as zero. However, non-nil hypotheses offer a more
realistic standard against which to evaluate sample results, when it is practical
to actually test them.

~ Perhaps most p values reported in the research literature are associated
with null hypotheses that are not plausible. For example, D. Anderson et
al. {2000} reviewed the null hypotheses tested in several hundred empirical
studies published from 1978 to 1998 in two prominent environmental sci-
ences journals, They found many biologically implausible null hypotheses
that specified things such as equal survival probabilities for juvenile and
adult members of a species or that growth rates did not differ across species,

- among other assumptions known to be false before the data were collected.

I am unaware of a similar survey of null hypotheses in the social sciences,
but it would be surprising if the results would be appreciably different.

SAMPLING DISTRIBUTIONS OF TEST STATISTICS ASSUME
RANDOM SAMPLING

Lunneborg (2001} described this issue as a mismatch between statistical
analysis and design. The p values for test statistics are estimated in sampling .
distributions that assume random sampling from known populations. These
are the same distributions in which standard errors for traditional confidence
intervals are estimated. Random sampling is a crucial part of the population
inference model, which concerns the external validity of sample results.
However, most samples in the social sciences are not randomly selected—
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they are samples of convenience. In experimental studies, it is the randomiza-
tion model, which involves the random assignment of locally available cases
to different conditions, that is much more common than the population
inference model. Reichardt and Gollob (1999) suggested that results of
standard statistical tests yield standard errors that are too conservative (too
large) when randomized cases are from convenience samples. They described
a modified ¢ test that assumes the population size equals total number of
cases, N = n; + nz. Lunneborg (2001) described the use of bootstrapping
to construct empirical sampling distributions for randomization studies based
on convenience samples. Bootstrapping is described in chapter 9.

Bakan (1966) argued that the ideal application of NHST is manufactur-
ing, not the social sciences. Essentially any manufacturing process is suscepti-
ble to random error. If this error becomes too great, such as when pistons
are made too big relative to the cylinders in car engines, products fail. In
this context, the null hypothesis represents a product specification that is
reasonable to assume is true, samples can be randomly selected, and exact
deviations of sample statistics from the specification can be accurately mea-
sured. It may also be possible in this context to precisely estimate the costs
of certain decision errors. All of these conditions rarely hold in behavioral
rescarch. As the saying goes, one needs the right tool for the right job.
Perhaps NHST is just the wrong tool in many behavioral studies.

STATISTICAL ASSUMPTIONS OF NHST METHODS ARE
INFREQQUENTLY VERIFIED

Statistical tests usually make certain distributional assumptions. Some
are more critical than others, such as the sphericity requirement of the
dependent samples F test. If critical assumptions are violated, p values may
be wrong. Unfortunately, it seems that too many researchers do not provide
evidence about whether distributional assumptions are met. H. Keselman
et al. (1998) reviewed more than 400 analyses in studies published from
1994 t0 1995 in major education research journals, and they found relatively
few articles that verified assumptions of statistical tests. Max and Onghena
(1999) found a similar neglect of statistical issues across 116 articles in
speech, language, and hearing research journals. These surveys reflect an
apparently substantial gap between NHST as described in the statistical
literature and its use in practice. Results of more quantitative reviéws also
suggest that there may be relatively few instances in practice when widely
used methods such as the standard F test give accurate results because of
violations of assumptions (e.g., Lix, J. Keselman, & H. Keselman, 1996).
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NHST BIASES THE RESEARCH LITERATURE

There is a sense that journal editors are not interested in publishing
studies without Hy rejections. This perception is supported by (a) comments
by past editors of respected journals about favoring studies with Hy rejections
(e.g., Melton, 1962); (b) survey results that show that behavioral researchers
are unilikely to submit studies without Hg rejections for publication {e.g.,
Greenwald, 1975); and (c) the more causal observation that the large
majority of published studies contain Hp tejections. The apparent bias for
studies with statistically significant results presents the difficulties enumer-
ated and discussed next:

1. The actual rate of Type I evror in published studies may be much
higher than indicated by o Suppose that a treatment is no more
effective than control (the nil hypothesis is true) and 100
different studies of the treatment are each conducted at o =
.05. Of the 100 ¢ tests of the treatment versus control mean
contrasts, a total of five are expected to be statistically signifi-
cant. Suppose these five studies are published, but authors of
the other 95 decide not to submit their studies or do so but
without success. The actual rare of Type 1 error among the
five published studies is 100%, not 5%. Also, the only studies
that got it right—the 95 where Hp was not rejected—were
never published. Clark (1976) made a similar point: Because
researchers find it difficult to get their failures to replicare
published, Type I errors, once made, are difficult to correct.

2. The reluctance to submit or publish studies with no statistically
significant results leads to a “file drawer problem.” This term is
from R. Rosenthal (1979}, and it refers to studies not submitred
for publication or presented in another forum, such as confer-
ences. It is thought that many file drawer studies contain no
Hj rejections. If an effect is actually zero, results of such studies
are more scientifically valid than published studies that reject
nil hypotheses.

3. Published studies overestimate population effect sizes. Without
large samples to study small- or medium-sized effects, it may
be difficult to get statistically significant results because of low
power. When Hj is rejected, it tends to happen in samples
where the observed effect size is larger than the population
effect size. If only studies with Hp rejections are published,
the magnitude of the population effect size winds up being
overestimated. An example illustrates this point. Table 3.2
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TABLE 3.2

Results of Six Hypothetical Replications

d Reject nil
Study M, - M, s} s3 . 1(38)  hypothesis? 95% Cl
1 2.50 1750 © 16.80 1.91 No -53-6.53
2 4,00 16.00 18.00 3.07 Yes 1.36-6.64
3 2.50 14.00 17.25 2.00 No | -03-5.03
4 4.50 13.00 16.00 3.74 Yes 2.06-6.94
5 5.00 12.50 16.60 4,15 Yes 56-7.44
6 250 15.00 17.00 1.98 No -.06-5.08

Average: 3.58 Range of 2.06-5.03
. . overlap:

Note. For all replications, n = 20, a = .05, and H, is nondirectional. Cl = confidence interval.

summarizes the results of six different hypothetical studies
where two of the same conditions are compared on the same
outcome variable. Note that resules of the independent samples
t test leads to rejection of a nil hypothesis in three studies
(50%), but not in the rest. More informative than the number
of Hy rejections is the average value of My — M; across all six
studies, 3.58. This result may be a better estimate of p; — 113
than the mean difference in any individual study. Now suppose
that results from the three studies with Hy rejections in the
table (studies 2, 4, and 5) are the only ones published. The
average value of M, — M for these three studies is 4.22, which
is greater than the average based on all six studies.

NHST MAKES THE RESEARCH LITERATURE DIFFICULT-
TO INTERPRET

If there is a real effect but power is only .50, about half the studies
will show positive results (Hj rejected) and the rest negative results (H,
not rejected). If somehow all studies are published, the box score of positive
and negative results will be roughly equal. From this perspective, it would
. appear that the research literature is inconclusive (e.g., Table 3.2}. Because
power is generally about .50 in the social sciences, it is not surprising that
only about half of the studies in some areas yield positive results (F. Schmidt,
1996). This is especially true in “soft” behavioral research where theories

are neither convincingly supported or discredited but simply fade away as

researchers lose interest (Meehl, 1990). Part-of the problem comes from
interpreting the failure to teject a nil hypothesis as implying a zero population
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effect size. Such misinterpretation may also lead to the discarding of treat-
ments that produce real benefits.

There may be other negative consequences of using NFIST outcomes
to sort studies by whether their results are statistically significant. [ have
heard many psychology students say, “Research never proves anything.”
These same students have probably recognized that “the three most com-
monly seer terms in the [soft social science] literature are ‘tentative,’ ‘prelimi-
nary,’ and ‘suggest.” As a default, ‘more research is needed’ ” (Kmetz, 2000,
p. 60). It is not only a few students who are skeptical of the value of
research. Clinical psychology practitioners surveyed by Beutler, R. Williams,
Walkefield, and Enewistle (1995) indicated that the clinical research litera-
ture was not relevant for their work. Similar concerns about research rele-
vance have been expressed in education (D. W. Miller, 1999). These unen-
thusiastic views of research are the antithesis of the attitudes that academic
programs try to foster.

NHST DISCOURAGES REPLICATION

Although I am unaware of data that supports this speculation, a survey
would probably find just as many behavioral researchets as their natural
science colleagues who would endorse replication as a critical activity.
Nevertheless, there is a sense that replication is given short shrift in the
social sciences compared to the natural sciences. There is also evidence
that supports this concern. Kmetz (1998) used an electronic darabase to
survey about 13,000 articles in the area of organizational science and about
28,000 works in economics. The rates of studies specifically described as
teplications in each area were .32% and .18%, respectively. Comparably
low. rates of nominal replications have also been observed in psychology
and education journals (e.g., Shaver & Norton, 1980).

The extensive use of NHST in the social sciences and resulting cogni-
tive misdirection may be part of the problem. For example, if one believes
that p < .01 implies that the result is likely to be repeated more than 99
times out of 100, why bother to replicate? A related cognitive error is the
belief that statistically significant findings should be replicated, but not ones
for which Hp was not rejected (F. Schmidt & Hunter, 1997). That NHST
makes research literatures look inconclusive when power is low may also
work against sustained interest in research topics.

Perhaps replication in the behavioral sciences would be more highly
valued if confidence intervals were reported more often. Then readers of
empirical articles would be able to see the low precision with which many
studies are conducted. That is, the widths of confidence intervals for behav- -
ioral data are often, to quote J. Cohen (1994, p. 1002), “so embarrassingly
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large!” Relatively wide confidence intervals indicate that the study contains
only limited information, a fact that is concealed when only results of
statistical test§ are reported (F. Schmidt & Hunter, 1997). This reality
is acknowledged by the aspect of meta-analytic thinking that does not
overemphasize outcomes of statistical tests in individual studies (see chap. 1,
this volume).

NHST OVERLY AUTCMATES THE REASONING PROCESS

Social science researchers and students alike seem to universally
understand the importance of precise operationalization. The method of
NHST offers many of the same apparent advantages in the realm of
inference: It is a detailed, step-by-step procedure that spells out the
ground rules for hypothesis testing (see chap. 2, this volume). It is also
a public method in that its basic rules and areas for researcher discretion
are known to all. One of the appeals of NHST is that it automates
much of the decision-making process. It may also address a collective
need in the social sciences to appear as objective as the natural sciences.
However, some critics claim that too much of our decision making has
been so automated. Some of the potential costs of letting statistical tests
do our thinking for us are summarized next.

1. Use of NHST encourages dichotomous thinking. The ultimare
outcome of a statistical test is dichotomous: Hp is either
rejected or not rejected. This property may encourage dichot-
omous thinking in its users, and nowhere is this more
evident than for p values. If o = .05, for instance, some
researchers see a result where p = .06 as qualitatively
different than one where p = .04. These two results lead
to different decisions about Hg, but their p values describe
essentially the same likelihood of the data (Rosnow & R.
Rosenthal, 1989). More direct evidence of dichotomous
thinking ‘was described by Nelson et al. (1986), who asked
researchers to rate their confidence in results as a function
of p values. They found a relatively sharp decline in rated
confidence when p values were just above .05 and another
decline when p values were just above .10. These changes
in confidence are out of proportion to changes in continuous
b values.

That NHST encourages dichotomous thinking may also
contribute to the peculiar practice to describe results where
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p is just above the level of o as “trends” or “approaching
significance.” These findings are also typically interpreted
along with statistically significant ones. However, results with
p values just lower than o, such as p = .04 when o = .03, are
almost never described as “approaching nonsignificance” and
subsequently discounted. There is a related tendency to attri-
bute the failure to reject Hy to poor experimental design rather
than to the invalidity of the substantive hypothesis behind
H, (Cartwright, 1973).

. Use of NHST diverts attention away from the data and the mea-

surement process. If researchers become too preoccupied with
Hp rejections, they may lose sight of other, more important
aspects of their data, such as whether the variables are properly
defined and measured. There is a related misconception that
reliability is an attribute of tests rather than of the scores for
a particular population of examinees (B. Thompson, 2003).
This misconception may discourage researchers from reporting
the reliabilities of their own data. Interpretation of effect size
estimates also requires an assessment of the reliability of the
scores (Wilkinson & the Task Force on Statistical Inference
[TESI), 1999).

. The large investment of time to learn NHST limits exposure to

other methods, There is a large body of statistical methods other
than NHST that can deal with a wide range of hypotheses
and data, but social science students generally hear little about
them, even in graduate school. The almost exclusive devotion
of formal training in statistics to NHST leaves little time for
leatning about alternatives. Those who become professional
researchers must typically leam about these methods on their
own or in workshops.

. The method of NHST may facilitate research about fad topics that

clutter the literature but have little scientific value. Meehl's {1990)
observations on soft psychology research topics with short
shelf lives were mentioned earlier. The automatic nature of
NHST has been blamed by some authors as a contributing
factor: With very little thought about a broader theoretical
rationale, one can collect data from a sample of convenience
and apply statistical tests. Even if the numbers are random,
some of the results are expected to be statistically significant.
The objective appearance and mechanical application of
NHST may lend an air of credibility to studies with otherwise
weak conceptual foundations.
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NHST IS NOT AS OBJECTIVE AS IT SEEMS

The levél of o and the forms of Hp (nil versus non-nil) and the
alternative hypothesis (directional versus nondirectional) should be specified
before the data are collected. This does not always happen in practice.
Under a strict view, this is paramount to cheating. Even under a less
demanding standard, the ability to change the rules to enhance the outcome
makes the whole process seem more subjective than objective. Selective
reporting of results, such as only those where Hp was rejected, presents a
similar problem.

MANY NHST METHODS ARE MORE CONCERNED
WITH GROUPS THAN INDIVIDUALS

Statistical tests that analyze means, such as ¢t and F, are concerned
with group statistics. They provide little information about individuals
within these groups. Indeed, within-groups variances contribute to the error
terms of both ¢t and E. However, there are times when it is crucial to
understand the nature of individual differences within groups. For instance,
it can happen that the group mean difference is statistically significant, but
there is substantial overlap of the two frequency distributions. This suggests
that the difference at the group level does not trickle down to the case
level. Some methods of effect size estimation introduced in chapter 4 analyze
differences at the case level.

NHST AND SCHOOLS OF PROBABILITY

In the fields of mathemarics, statistics, and philosophy of science,
there are several different schools of thought about probabilities, including
classical, frequentist, and subjective, among others. There are also deep and
long-standing divisions between these schools about the exact meaning of
probabilitics and their proper interpretation. These debates are complex
and highly nuanced, and whole books have been written on the subject
(e.g., Hogben, 1957). For these reasons, these debates cannot be summarized
in this section. However, readers should know that NHST is associated
with only some of these schools of thought about probability; specifically,
ones that view probabilities as relative frequencies of repeatable events that
can be empirically cbserved or approximated with theoretical sampling
distributions. The method of NHST also uses little previous knowledge
other than to assume that Hy is true. But in no way does NHST represent
a consensual view of probability either within or outside the social sciences.
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CONTINUED USE OF NHST IS A RESULT OF INERTIA

Several critics have described the continued use of NHST as an empty,
ritualized practice, one carried out with little reflection. Education in social -
science statistics that fails to inform about alternatives may encourage the
belief that there is no other way to test hypotheses (F. Schmidt & Hunter,
1997). This belief is unfounded. It is also worth noting that some of the
most influential work in psychology, including that of Piaget, Pavlov, and
Skinner, was conducted without rejecting null hypotheses {Gigerenzer,
1993). The natural sciences have thrived despite relatively little use of
statistical tests. : '

Others note the general difficulty of changing established methods in
science. A familiar, well-entrenched method is like a paradigm, and changing
paradigms is not quick or easy (Kuhn, 1996). Such change sometimes awaits
the passing of an older generation of scholars and its replacement with
younger colleagues who are not as set in their ways. Recall that the adoption
of NHST as the standard for hypothesis testing in psychology took about
20 years (see chap. 1, this volume).

IS THERE ANYTHING RIGHT WITH NHST?

The litany of criticisms of NHST reviewed in this chapter raise the
question of whether there is anything right about NHST. However, NHST
is not without its defenders. Some positive aspects of NHST ate enumerated
and discussed next.

1. If NHST does nothing else, it addresses sampling ervor. Sampling
error is one of the core problems of behavioral research. For
all the limitations of p values, they are at least derived taking
account of sampling error. Accordingly, some behavioral re-
searchers see NHST as addressing an important need and thus
may be less like passive followers of tradition than supposed
by critics. Any proposed alternative to NHST must deal with
the problem of sampling etror lest it be seen as irrelevant to
the needs of these researchers. Critics of NHST rightly point
out that confidence intervals convey more information about
sampling error than test statistics and p values. They also
suggest that excessive preoccupation with staristical rests is
one reason why confidence intervals are not reported more
often. However, confidence intervals are subject to some of
the same kinds of inference errors as NHST. Abelson (1997a)
made this point in a lighthearted way by describing the “law
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of diffusion of idicey,” which says that every foolish practice
of NHST will beget a corresponding practice with confidence
intervils. However, just because a confidence interval can be
interpreted in some ways like a statistical test does not mean
that it must be.

Confidence intervals are not a magical alternative o NHST.
However, interval estimation in individual studies and replica-
tion together offer a much more scientifically credible way
to address sampling error than the use of statistical tests in
individual studies. Consider again the data in Table 3.2 for
six hypothetical replications. A 95% confidence interval about
the observed mean contrast is reported for each replication.
Each interval estimates sampling error, but itself is also subject
to sampling error. The range of overlap among the six confi-
dence intervals is 2.06 to 5.03. This information is more useful
than knowing that a nil hypothesis was rejected in 3/6 studies.
F. Schumidt (1996) and others have noted that even if our
initial expectations regarding parameters are very wrong, we
will eventually discover our error by plotting the related confi-
dence intervals across studies.

. Misinterpretations of NHST are not the fault of the method. De-

fenders of NHST generally acknowledge widespread misiner-
pretations. They also note that such misunderstandings are
the responsibility of those who use it (Krantz, 1999). Critics
may counter that any method with so much apparent potential
to be misconserued by so many intelligent and highly educated
users must ultimately assume some of the blame.

. More careful use of technical terms may avoid unwarranted conno-

tations. An area of suggested reform concerns the language
used to report the results of statistical tests (e.g., D. Robinson
& Levin, 1997). For example, some have suggested that the
term significant should always be qualified by the word statisti-
cally—which may prompt readers to distinguish between statis-

“tical significance and substantive significance (B. Thompson,

1996)—and that exact p values should be reported instead of
just whether they are less than or greater than o, such as:

t (20) = 2.40, p = .026

instead of

¢t (20) = 2.40,p < .05

STATISTICAL TESTS

The latter recommendation has some problems, however. The -

possibility that p values are incorrect in many behavioral stud-
ies was mentioned earlier, so their reporting to three- or four-
decimal accuracy may give a false impression. In large samples,
p values are often very low, such as 000012, and reporting
such small probabilities may actually encourage misinterpreta-
tion. It must also be said that these kinds of suggestions have
been made many times over the past 50 years with little
apparent impact. Critics would probably feel little conviction
that any of the modifications just described would ameliorate
the limitations of NHST for most applications in the social
sciences. For them, the following expression may be pertinent:
You can put candles in a cow pie, but that does not make it
a birthday cake,

. Some research questions require a dichotomous answer, The final

outcome of NHST is the decision to reject or fail to reject
H,. There are times when the question thac motivates the
research is also dichotomous, including, for instance, should
this intervention program be implemented? Is this drug more
effective than placebo? The method of NHST addresses
whether observed effects or relations stand out above sampling
error, but it is not as useful for estimating the magnitudes of
these effects (Chow, 1996). There are also times when theories
predict directions of effeets but not their specific magnitudes.
One reading instruction method may be believed to be more
effective than another by some unknown amount, for example.
The testing of theories that predict directions but not amounts
is also probably mere typical in the social sciences than in
the natural sciences. However, it is always useful to measure
the magnitude of an effect. Indeed, if we cannot think about
magnitudes, then we may never get to theories that predict
magnitudes instead of just directions. Estimating the average
size of an effect with meta-analysis instead of counting the
numbers of Hp rejections is also a better way to synthesize
results across a set of studies (chap. 8, this volume). .

. Nil hypotheses are sometimes appropriate. The criticism that nil

hypotheses are typically false was discussed earlier. As noted
by Frick (1995), D. Robinson and Wainer (2002), and others,
there are cases when the assumption of a zero effect is justified.
For example, there may be no reason in a complex study to
predict an effect when just one independent variable is
manipulated. ‘
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6. The method of NHST is a gateway to statistical decision (uility)
theory. In this approach—well known in fields such as
engineering and environmental studies—probabilities of
Type 1 and Type II errors are weighted by estimated costs
of each kind of mistake. The net anticipated gains and
losses are then evaluated to make rational decisions about
alternative actions in the face of uncertainty. In contrast
to NHST, the probability of a Type I error is not arbitrarily
set to either .05 or .01 in statistical decision theory. The
latter method may be able to detect long-term negative
consequences of an intervention even while staristical tests
are unable to reject the nil hypothesis of no short-term
effect (Johnson, 1999). Statistical decision theory is a very
powerful method if it is possible to estimate the costs of
different decisions in dollars, life expectancy, or some other
quantitative, objective metric. This is not usually possible
in behavioral research.

VARIATIONS ON NHST

This section identifies some specialized methods that are modifications
of the basic NHST model. These methods may avoid some of the problems
of traditional statistical tests and can be very useful in the tight situation.
It is possible to give only brief descriptions, but interested readers can look
to the works cited next for more information.

Range Null Hypotheses and Good—Enough Belts

As mentioned, any point null hypothesis is probably false. Serlin
(1993) described the specification of Hp as a range hypothesis that
indicates the values of the population parameter considered equivalent
and uninteresting. The alternative hypothesis is still a range hypothesis,
but it specifies a minimum result based on substantive comsiderations
that is necessary for additional analysis. These ranges for Hp and H; are
called good-enough belts, which implies that one hypothesis or the other

is considered supported within predefined margins. The specification of °

range null hypotheses in the social sciences is relatively rare—a notable
exception is the evaluation of model fit in structural equation modeling
(e.g., Kaplan, 2000, chap. 6)—and there is some question whether this
approach would make any practical difference {Cortina & Dunlap, 1997).
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Equivalence Testing

Equivalence testing is better known in pharmacological research and
the environmental and biological sciences. It deals with the problem of
establishing equivalence between two groups or conditions. For example, a
researcher may wish to determine whether a generic drug can be substituted
for a more expensive drug. In traditional NHST, the failure to reject Hy:
U; = Hy is not evidence that the drugs are equivalent. In one form of
equivalence testing, a single point null hypothesis is replaced by two range
subhypotheses. Each subhypothesis expresses a range of L — J; values
that corresponds to substantive mean differences. For example, the pair of
subhypotheses '

JHog (1 — 1) < -10.00

Hg
¢ 1 Hop (1 — pa) > 10.00

says that the population means cannot be considered equivalent if the
absolute value of their difference is greater than 10.00. The complementary
interval for this example is the equivalence hypothesis

—10.00 £ (g — p) < 10.00

which is a good-enough belt for the equivalence hypothesis. Standard statisti-
cal tests are used to conirast the observed mean difference against each of
these one-sided null hypotheses for a directional alternative hypothesis.
Only if both range subhypotheses are rejected at the same level of ¢ can
the compound null hypothesis of nonequivalence be rejected. The same
decision can also be reached on the basis of a confidence interval around
the observed mean difference. In the approach just outlined, Type I error
is the probability of declaring two populations or conditions to be equivalent
when in truth they are not. In a drug study, this risk is the patient’s (consum-
er's) risk., McBride (1999) showed that if Type I error risk is to be the
producer's instead of the patient’s, the null hypothesis appropriate for this
example would be

Ho: -10.00 = (]J.[ - }.lz) < 10.00
and it would be rejected if either the lower end of 2 one-sided confidence
interval about the observed mean difference is greater than 10.00 or the

upper end of a one-sided confidence interval is less than -10.00. Rogers,
K. Howard, and Vessey {1993) introduced equivalence testing to social
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scientists, and P. M. Dixon (1998) described its application in risk
assessment.

3

Inferential Confidence Intervals

Tryon (2001) proposed an integrated approach to testing means for
statistical differenice, equivalence, or indeterminancy (neither statistically
different or equivalent). It is based on inferential confidence intervals, which
are modified confidence intervals constructed around individual means. The
width of an inferential confidence interval is the product of the standard
error of the mean (Equation 2.4) and a two-tailed critical ¢t value reduced
by 2 correction factor that equals the ratio of the standard error of the mean
difference (Equation 2.8) over the sum of the individual standard errors.
Because values of this correction factor range from about .70 to 1.00, widths
of inferential confidence intervals are generally narrower than those of
standard confidence intervals about the same means.

A statistical difference between two means occurs in this approach
when their inferential confidence intervals do not overlap. The probability
associated with this statistical difference is the same as that from the standard
t test for a nil hypothesis and a nondirectional alternative hypothesis. In
other words, this method does not lead. to a different conclusion than

standard NHST, at least in difference testing. Statistical equivalence is,

concluded when the maximum probable difference between two means is less
than an amount considered inconsequential as per an equivalence hypothe-
sis. The maximum probable difference is the difference between the highest
upper bound and the lowest lower bound of two inferential confidence
intervals. For example, if the 10.00 to 14.00 and 12.00 to 18.00 are the
inferential confidence intervals based on two different means, the maximum
probable difference is 18.00 — 10.00 = 8.00. If this difference lies within the
range set by the equivalence hypothesis, statistical equivalence is inferred. A
contrast neither statistically different or equivalent is indeterminant, and
it is not evidence for or against any hypothesis. Tryon clzimed that this
method is less susceptible to misinterpretation because (a} the null hypothe-
sis is implicit instead of explicit, (b) the model covers tests for both differ-
encesand equivalence, and {c) the availability of a third outcome—statistical
indeterminancy—may reduce the interpretation of matginally nonsignifi-
cant differences as “trends.” It remains to be seen whether this approach
will have a positive impact.

Three-Valued Logic

Kaiser (1960) may have been one of the first social science authors
to suggest substituting three-valued logic for the standard two-valued (dichoto-
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mous) logic of NHST. Briefly, three-valued logic allows split-tailed alterna-
tive hypotheses that permit statistically significant evidence against a sub-
stantive hypothesis if the direction of the observed effect is not as predicted.
This is basically a simultaneous test of two directional alternative hypotheses,
one for and the other against the research hypothesis. The third kind of
test is for a standard nondirectional alternative hypothesis. Harris (1997b)
provides a very clear, contemporary description of three-valued logic, but
notes that it has not been used much.

WHAT DO WE DO NOW? BUILDING A BETTER FUTURE

After considering criticisms of statistical tests, we can choose one of
the following courses of action:

1. Do nothing; that is, continue using statistical tests just as we

~ have for the past 50 years.

2. Stop using statistical tests entirely. Stop teaching them in
university courses. Effectively ban their use by refusing to
publish studies in which they are used. Although this option
sounds hypothetical or even radical, some highly respected
researchers have called for such a ban (e.g., Hunter, 1997; F.
Schmidt, 1996).

3. Chart a course between the two extreres listed, one that calls
for varying degrees of use of statistical tests—from none to
somewhat more pivotal, depending on the research context,
but with strict requirements for their use.

The first option is not acceptable because thete are negative implica-
tions for the advancement of behavioral research that rule out doing nothing.
A ban on statistical tests in psychology journals does not seem imminent
in the short term, but the fact that some journals require the reporting of
effect sizes is an effective ban on the use of statistical tests by themselves
(see chap. 1, this volume). The first two options are thus excluded.

Outlined next are recommendations based on the third option. They
are intended as a constructive framework for change. It is assumed that
reasonable people could disagree with some of the specifics put forward.
Indeed, a lack of consensus has characterized the whole debate about NHST,
so no single set of recommendations will satisfy everyone. Even if the reader
does not endorse all the points outlined, he or she may at least learn new
ways of looking at the controversy about statistical tests or, even better,
data, which is the ultimate goal of this book.

The main theme of the recommendations can be summarized like this:
The method of NHST may have helped us in psychology and related
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behavioral sciences through a difficult adolescence during which we struggled
to differenciate ourselves from the humanities while at the same time we
strived to becdme more like our primary role model, the natural sciences.
However, just as few adults wear the same style of clothes, listen to the
same types of music, or have the same values they did as teenagers, behavioral
research meeds to leave its adolescence behind and grow into new ways of
doing things. Arrested development is the only alternative.

Recommendations

Specific suggestions are listed and then discussed afterward:

1. Only in very exploratory research where it is unknown whether
effects exist may a primary role for NHST be appropriate,

2. If statistical tests are used, {a) information about power must
be reported, and (b) the nuil hypothesis must be plausible.

3. Inanykind of behavioral research, it is not acceptable anymore
to describe results solely in terms of NHST outcomes.

4. Drop the word “significant” from our data analysis vocabulary.
Use it only in its everyday sense to describe something actually
noteworthy or important. ’

5. It is the researcher's responsibility to report and interpret,

_ whenever possible, effect size estimates and confidence inter-
vals for pomary results. This does not mean to report effect
sizes only for Hy rejections.

6. It is also the researcher’s responsibility to demonstrate the
substantive {theoretical, clinical, or practical) significance of
the results. Statistical tests are inadequate for this purpose.

. Replication is the best way to deal with sampling etror.

8. Education in statistical methods needs to be reformed, too.
The ole of NHST should be greatly deemphasized so that
more time can be spent showing students how to determine
whether a result has substantive significance and how to repli-
cate it.

9. Researchers need more help from their statistical software to
compute effect sizes and confidence intervals.

~]

A Primary Role for NHST May Be Suitable Only in Very
Exploratory Research

The ability of NHST to address the dichotomous question of whether
relations are greater than expected levels of sampling error may be useful
in some new research areas. Considering the many limitations of NHST
discussed, the period of this usefulness should be brief. Given evidence that

86 STATISTICAL TESTS

an effect exists, the next steps should involve estimation of its magnitude
and evaluation of its substantive significance, both of which are beyond the
range of what NHST can tell us. More advanced study of the effect may
requite model-fitting techniques, such as structural equation modeling (e.g.,
Kline, 1998), hierarchical linear modeling (e.g., Raudenbush & Bryk, 2002),
or latent class analysis {e.g., Hagenaars & McCutcheon, 2002), among other
techniques that rest models instead of just individual hypotheses. It should
be the hallmark of a maturing research area that NHST is not the primary
inference tool. :

Report Power for Any Use of Statistical Tests, and Test Only Plausible
Null Hypotheses

The level of power reported should be a priori power, not observed
power (see chap. 2, this volume; also. Wilkinson & TFS], 1999). It is
especially important to report power if most of the results are negative—
that is, there were few Hy rejections. This is because readers of an empirical
study should be able to tell whether the power of the study is so low (e.g.,
< .50) that negative results are expected. Knowing that Ho was rejected is
useful only if that hypothesis is plausible. Also, one minus power is the
probability of a Type 11 error, which can only occur if Hp is not rejected
when there is a real effect. We probably see so few examples of reporting
power in the research literature when the results are mainly negative because

“of bias toward only publishing studies with Hy rejections. In a less biased -

literature, however, information. about power would be more relevant. Low
p values that exaggerate the relative infrequency of the results are expected
under implausible null hypotheses. If it is feasible to test only a nil hypotheses
but a nil hypothesis is implausible, interpretation of the results of statistical
tests should be accordingly modified.

It Is Not Acceptable to Describe Results Only on the Basis of
NHST Qutcomes

All of the shortcomings of NHST considered provide the rationale
for this recommendation. For journal editors and reviewers, NHST outcomes
should also not be the primary consideration for deciding whether to accept
or reject submissions for publication.

Stap Using the Word “Significant” in Connection With NHST

In hindsight, the choice of the word “significant” to describe the event
p < & was very poor. Although statisticians understand that significant in
NHST does not imply a large or important effect, the use of this word may
foster false beliefs among nonstatisticians. Accordingly, we in the behavioral
sciences should “give” this word back to the general public and use it only
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as does everyone else—to denote importance, meaningfulness, or substantial-
ness. Use of just the word “statistical” when Hy is rejected should suffice.
For instance, tajection of the hypothesis Hy: p = 0 could be described as
evidence for a staristical association or correlation between the variables,
and rejection of the hypothesis Fg: i1 = [ could be described as evidence
for a statistical mean difference (Tryon, 2001). Calling an effect statistical
implies that it was observed, but not also noteworthy. Of course, statistical
effects may also be meaningful effects, but this is a not a question for NHST.
The simple’ phrasing just suggested also seems preferable to the expression
“statistically reliable” to describe Hy rejections. This is because one connota-
tion of reliable is repearable, but p values say nothing directly about the
chances of replication. At the very least, if the word significant is used in
an oral or written interpretation of the results, it should always be preceded
by the qualifier “statistical” (B. Thompson, 1996).

Whenever Possible, Researchers Should Be Obliged to Report and Interpret
! Effect Sizes and Confidence Intervals

That increasing numbers of journals require effect size estimates sup-
ports this recommendation (see chap. 1, this volume). Reporting confidence
intervals for effect size estimates is even better: Not only does the width
of the confidence interval directly indicate the amount of sampling error
associated with an observed effect size, it also estimates a range of effect
sizes in the population that may have given rise to the observed result.
However, it is recognized thar it is not always possible to compute effect
sizes in certain kinds of complex designs or construct confidence intervals
based on some types of statistics. However, effect size can be estimated and
confidence intervals can be reported in most behavioral studies.

Researchers Shotld Also Be Obliged to Demonserate the Substantive
Significance of Their Results

Null hypothesis rejections do not imply substantive significance. Thus,
researchers need other frames of reference to explain to their audiences why
the results are interesting or important. A quick example illustrates this
idea. In a hypothetical study titled “Smiling and Touching Behaviors of
Adolescents in Fast Food Restaurants,” effects were statistically significant,
but might not be deemed substantively important to many of us, especially
if we are not adolescents, or do not frequent fast food restaurants. It is
not easy to demonstrate substantive significance, and certainly much more
difficult than using p values as the coin of the social scientific realm. Estima-
tion of effect size gives a starting point for determining substantive signifi-
cance; so does consulting meta-analytic works in the area (if they exist). It
is even better for researchers to use their domain knowledge to inform the
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use of the methods just mentioned (Kirk, 1996). These ideas are elaborated
in the next chapter, ‘

Replication Is the Best Way to Deal With Sampling Error

The rationale for this recommendation is also obvious. It would make
a very strong statement if journals or granting agencies required replication.
This would increase the demands on the researcher and result in fewer
published studies. The quality of what would be published might improve,
however. A requirement for replication would also filter out some of the
fad social science research topics that bloom for a short time but then
quickly disappear. Such a requirement could be relaxed for original results
with the potential for a large impact in their field, but the need o replicate
studies with unexpected or surprising results is even greater (D. Robinson

& Levin, 1997).

Education in Statistical Methods Should Be Much Less NHST-Centric and
More Concerned With Replication and Determining Substantive Significance

The method of NHST is often presented as the pinnacle in many
introductory statistics courses. This situation is reinforced by the virtually
monolithic, NHST-based presentation in many undergraduate-level statis-
tics textbooks. Graduate courses often do little more than inform students
about additional NHST methods and strategies for their use (Aiken et al,,
1990). The situation is little better in undergraduate psychology programs,
which emphasize traditional approaches to analysis (i.e., statistical tests)
and have not generally kept pace with changes in the field (Frederich,
Buday, & Kerr, 2000). It is also true that many statistics textbooks still do
not emphasize methods beyond traditional statistical tests, such as effect
size (e.g., R. Capraro & M. Capraro, 2002).

Some topics already taught in introductory courses should be given
more prominence. Many effect size indexes are nothing more than correla-
tions, proportions of standard deviations, or percentages of scores that fall
at certain points. These are all basic kinds of statistics covered in many
introductory courses. However, their potential application outside classical
descriptive or inferential statistics is often unexplained. For example, stu-
dents usually learn about the t test for comparing independent means. These
same students often do not know about the poine-biserial correlation, .
In a two-sample design, 1y, is the correlation between a dichotomous inde-
pendent variable (group membership) and a quantitarive dependent variabte.
It is easily derived from the t test and is just a special case of the Pearson

. correlation .

Less emphasis on NHST may also encourage students to choose simpler
methods of data analysis (e.g., Wilkinson et al., 1999). Doing so may help
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them appreciate that NHST isnot necessary to detect meaningful or notewor-
thy effects, which should be obvious to visual inspection of relatively simple
kinds of statistics or graphical displays {J. Cohen, 1994). The description
of results at a level closer to the data may also help students develop better
communication skills. This is important for students who later take up
careers where they must explain the implications of their results to policy
makers (McCariney & R. Rosenthal, 2000). ‘

We also need better integration between courses in research methods
and statistics. In many undergraduate programs, these subjects are taught
in separate courses, and there may be little connection between the two.
The consequence is that students learn about data analysis methods without
getting a good sense of their potential applications. This may be an apt
time to rethink the partition of the teaching of research skills into separate
statistics and methods courses.

Statistical Software Should Be Better at Computing Effect Sizes and
Confidence Intervals

Most general statistical software programs are still very NHST-centric.
That more of them now optionally print at least some kinds of effect size
indexes is encouraging, Considering these discussions, however, pethaps
results of statistical tests should be the optional output. Literally dozens of
effect size indexes are available {e.g., Kirk, 1998), and at least some of the
miore widely used indexes should be availahle in computer program output
for every amalytical choice. It should also be the case that for a given
analytical choice, several different effect sizes are options. Many contempo-
rary general statistical programs also optionally print confidence intervals
for population means or regression coefficients, but they should also give
confidence intervals for population effect sizes. It was mentioned that special
computational methods required for exact confidence intervals for effect
sizes have only recently become more widely available, but one hopes that
these algorithms will scon be incorporated into general statistical packages.

CONCLUSION

Statistical tests have been like a collective Rorschach inkblot test for
the social sciences: What we see in them has had more to do with wish
fulfillent than what is really there. This collective magical thinking has
impeded the development of psychology {and related areas) as a cumulative
science. There is also a mismatch between the characteristics of many
behavioral studics and what is required for results of statistical tests to be
accurate. That is, if we routinely specified plausible null hypotheses, studied
random samples, checked distributional assumptions, estimated power, and
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understood the correct meaning of p values, there would be no problem
with statistical tests as our primary inference tool. None of these conditions
are generally true in the behavioral sciences. I offered several suggestions
in this chapter, all of which involve a much smaller role—including none
whatsoever—for traditional statistical tests. Some of these suggestions in-
clude the computation of effect sizes and confidence intervals for all effects
of interest, not just ones in which a null hypothesis is rejected, and evaluation
of the substantive significance of results, not just their statistical significance.
Replication is the most important reform of all.
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